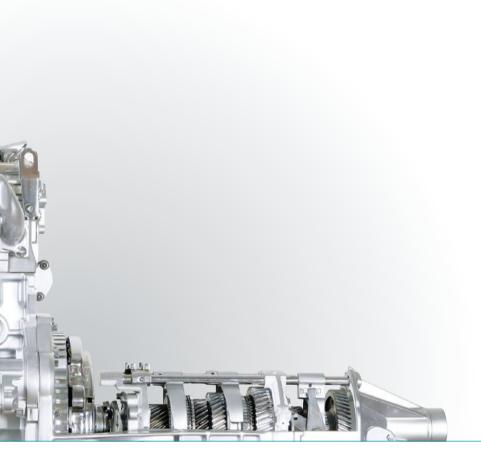

www.tenergy.co.kr


Powertrain / Vehicle Engineering Solutions

Driving The Future Through Energy Conversion Technology

Contents

- 04 Who is TENERGY
- 10 Achievements
- 16 Engine design
- 18 CAE analysis
- 20 CAE specialty company TenergySoft
- 24 Engine test
- 26 Transmission design & development
- 28 Vehicle calibration
- 34 Fuel economy analysis
- 36 xEV benchmarking and system development
- 38 Electric and electronics solution
- 40 Bus fuel saving system
- 42 Big data management system
- 46 Vehicle engineering
- 50 Major clients

TENERG

World Best with The Best Driving the future through leading technology

TENERGY is trying to lead green technology and listen to the voice of clients.

TENERGY is an engineering service provider of automotive industry with utmost professionalism and agility.

We have our special expertise and best technology to make success for our clients. We offer detail and flexible solutions for powertrain and vehicle development as total programs or selected services.

Strong partnership and engineering perfection are our commitments. TENERGY is a technical leader in the field of energy conversion and environmental technology.

 $\rightarrow \rightarrow \rightarrow$ TENERGY is ready to support the clients who are thirsty for higher level of engineering to make the green world.

Suwon R&D center

III TENERGY

Dongtan R&D center

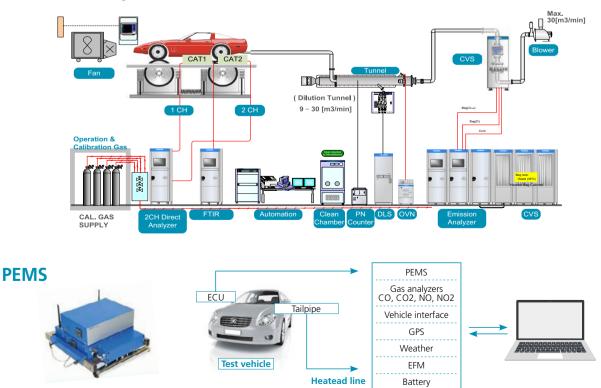
Suwon R&D center

Engine dynamometers

Test cell		Concerned and an an addition		
Test cell	Туре	kW	Maker	Gas analyzer model
T-01	AC	390	Schorch	Horiba 8120
T-02	EC	290	Apicom	Horiba 8120
T-03	AC	200	AVL	Horiba 9100
T-04	Hydraulic	2,500	Schenck	Horiba 9100
T-05	AC	390	Schorch	Horiba 9100
T-06	EC	30	Apicom	Horiba 9100
T-07	AC	390	Schorch	Horiba 7100
T-08	AC	300	D2T	Horiba 7100
T-09	EC	300	Meiden	Horiba 554
T-10	EC	300	Meiden	Horiba 554

Chassis dynamometers

Test cell		Dynamometer		Capacity (kW)		Emission analyzar
lest cell	Туре		Maker	Front	Rear	Emission analyzer
CD-01	4 WD	Single roll	Onosokki	110	75	AVL AMA 4000 · 2ch analyzer
CD-02	4 WD	Single roll	HORIBA	150	150	HORIBA MEXA-ONE 3ch analyzer FTIR


Dongtan R&D center

Test cell		Coo on alverar model		
Test cell	Туре	kW	Maker	Gas analyzer model
T-01	AC	390	Schorch	TBD
T-02	AC	390	Schorch	TBD
T-03	AC	390	Schorch	Horiba 9100DEGR
T-04	AC	400	AVL	TBD
T-05	AC	220	AVL	Horiba 9130
T-06	AC	350	AVL	Horiba 9130
T-07	AC	390	Schorch	TBD
T-08	AC	350	AVL	Horiba 9100DEGR
T-09	EC	500	SAJ	TBD
T-10	Hydraulic	2,500	Schenck	TBD
T-11	DC	230	Meiden	-

Engine & Transmission dynamometers

Cold chamber (to -30°C, 2 units of vehicles can be tested concurrently)

Emission test system

Energy and Environment with a Passion for Green

III TENERGY

Driving the future through leading technology

TENERGY is dedicated to providing clients with an extensive portfolio of leading technology and superior consulting services as well as next generation solutions.

Our design concept is based on achieving what clients want: high power, fuel economy, low cost, compact design and environmentally friendly one. All of the achieved design outputs are validated through innovative and advanced technology method at engine test cells and various rigs under controlled conditions during the development process.

TENERGY provides not only engine development services but also complete power train calibration ones to clients.

Our calibration engineers have vast experiences in engine and transmission applications. In addition, they are familiar with many types of engine management systems from various EMS suppliers. We have the strong belief that TENERGY can make a great breakthrough from the old routine in energy saving and environment protection technology of future engines.

Current demands to save the planet via engine technology through more economical and cleaner engines are growing all over the world every year. TENERGY is ready to support to develop next generation, environmentally friendly Gasoline and Diesel engines. The aim is now to reduce the fuel consumption of engines through innovations, including downsizing, direct injection, variable valve train and new diesel FIE system.

Achievements

Relatively the history of TENERGY is short, but our development references are great. Furthermore, we have major engine design and development contracts with automakers and industrial makers at this moment.

Engine development

A2300T IDI engine

- \cdot Cylinder head design
- \cdot Mechanical development
- \cdot Vehicle cooling system development

2400T DI engine

- \cdot Design, CAE
- $\cdot\,$ Test & development, SOP support

D3400T DI engine

- \cdot Design, CAE
- · Test & development, SOP support

2.4L (TCI, TC, NA) CRDi Tier 4 engine

- · Combustion development
- · Mechanical & durability development
- · Engine & DPF calibration

2.0/2.4L Euro 5 Gasoline engine

- · Design (Concept, definitive & detail design)
- · Combustion development
- · Mechanical & durability development

1.8/2.4L(TC, NA) CRDi Tier 4 engine

- \cdot Combustion development
- \cdot Mechanical & durability development
- · Engine & DPF calibration

3.4L TCI CRDi Tier 4 engine

- · Mechanical development
- · Durability development

1.2L NA Gasoline Euro 5 engine

- \cdot Design, CAE
- \cdot Combustion development
- · Functional development

1.3L NA Gasoline Euro 4 engine

- · Design, CAE
- \cdot Combustion development
- · Mechanical & durability development

1.9/2.5L TCI CRDi Tier 4 engine

- \cdot Combustion development
- · Mechanical & durability development
- \cdot Vehicle calibration with CDPF

27L(V-12) TCI CRDi Diesel engine

- · Optimization of crank-train system
- · Improvement of bearing reliability

30L(V-12) TCI CRDi Diesel engine

- · Concept, definitive & detail design for 1MW power plant
- \cdot PFP 220 bar

1.8L Turbo-charged Gasoline Euro 5 engine

- · Design, CAE
- \cdot Combustion development
- · Mechanical & durability development
- · Engine & vehicle calibration

Denso Piezo 2,000 & 2,200bar FIE application to HMC R-engine

- · R-Engine base definition
- · Denso FIE packaging to R-Engine
- · Engine calibration & feasibility test

6.6L Dual fuel engine (LPG & Diesel)

- · System layout design including EMS system
- · Combustion development

0.033L Gasoline engine

- · Design (Concept, definitive & detail design)
- \cdot CAE
- · Test & development

2.0L GDI engine

- · Design (Concept, definitive & detail design)
- \cdot Combustion development

2.0L T-GDI engine

- · 10% performance improvement
- · Vehicle calibration ULEV 2 (EURO 5 equivalent)

2.0L T-GDI engine

- · Design, CAE
- \cdot Combustion development
- \cdot Engine calibration

2.7L NA Gasoline Euro 5 engine

- · Design, CAE
- · Combustion development
- · Mechanical & durability development
- · Engine calibration

125/150cc single cylinder engine

- \cdot Design, CAE
- \cdot Combustion development
- · Mechanical & durability development
- \cdot Engine calibration

149cc single cylinder engine for CHP

- · Design, CAE
- · Combustion development
- · Mechanical & durability development

1.5L NA Gasoline Euro 5 engine

- \cdot Design, CAE
- \cdot Combustion development
- · Mechanical & durability development

22L(V-12) TCI CRDi Diesel engine

- · Design, CAE
- · Combustion development
- · Mechanical & durability development
- Engine calibration

2.4L NA Gasoline Euro 5 engine

- \cdot Design, CAE
- · Combustion development
- · Mechanical & durability development
- · Engine & vehicle calibration

TENERGY 1.2/1.6L T-GDI engine

- · 1-3 & 1-4 NA & T-GDI family engine
- · Design, CAE
- · Combustion development

Engine benchmarking test

- · VW FOX 1.6L flexible fuel engine
- · Honda RDX 2.3L TCI engine
- · BMW 123d 2.0L Turbo engine
- · Audi A6 2.8L GDI engine
- · VW Golf 1.4L T-GDI engine
- · BMW X1 2.0L T-GDI engine
- · Peugeot 208 1.2L MPI engine
- Audi A3 1.8L TFSI engine
- · Benz E350 3.5L GDI engine
- · Ford C-MAX 1.6L T-GDI engine
- · VW Golf 1.4 ACT engine
- · VW Passat 2.0L TDI engine
- · VW Golf R 2.0L TFSI engine
- · ACURA RLX 3.5L GDI engine
- · BMW 330i 2.0L T-GDI engine
- · Toyota Highlander 3.5L GDI+MPI engine

Achievements

Relatively the history of TENERGY is short, but our development references are great. Furthermore, we have major engine design and development contracts with automakers and industrial makers at this moment.

Vehicle EMS calibration

Diesel vehicle calibration

A150 2.0 CRDi calibration

- \cdot EURO 5/4 regulation
- \cdot Emission / EOBD / CDPF / Drivability calibration

C150 2.0 CRDi calibration

- · EURO 5/4 regulation
- \cdot Emission / EOBD / CDPF / Drivability calibration

C211 2.0 CRDi calibration

- · EURO 5/4 regulation
- \cdot Emission / EOBD / CDPF / Drivability calibration

Y295 2.2 CRDi calibration

- \cdot EURO 6b regulation
- \cdot Emission / EOBD / CDPF / LNT/ Drivability calibration
- · RDE monitoring

Y400 2.2 CRDi calibration

- · EURO 6b/5/4 regulation
- \cdot Emission / EOBD / CDPF / LNT / Drivability calibration
- · RDE monitoring

Q200/201 2.2 CRDi calibration

- · EURO 6b/4 regulation
- · Emission / EOBD / CDPF / Drivability calibration
- \cdot RDE monitoring

Gasoline vehicle calibration

C300 / X150 1.5 T-GDI calibration

- \cdot K-SULEV30 regulation
- \cdot Emission / KOBD / Drivability calibration

X150 1.5 T-GDI calibration

- · EURO 6d temp regulation
- · Emission / EOBD / Drivability calibration
- \cdot GPF / RDE calibration

C300 2.0 MPI calibration

- · EURO 6b regulation
- · Emission / EOBD / Drivability calibration

1.8 T-GDI calibration

- · EURO 5 regulation
- · Emission / EOBD / Drivability calibration

3.3L MPI calibration

 \cdot OBD2 calibration

11L CNG calibration

- · EURO 6b regulation
- · CNG lean-burn engine OBD logic / calibration

125cc / 250cc Gasoline(single cylinder)

· Emission / OBD / Drivability calibration

Transmission development

T-MAT development

- Torque interruption free
 (Manual-based Automatic Transmission)
- · Concept & layout design
- · Under patent examination

Manual transmission

- · Design, CAE
- · Longitudinal 5 speed M/T
- · Shift control layout design

4WD Transfer case

- · Full-time transfer case with high gear and low gear
- · Concept & layout design
- · Test & development

A/T calibration

- Calibrating shifting-process control and specific operating modes
- · Designing shift points

Fan clutch development

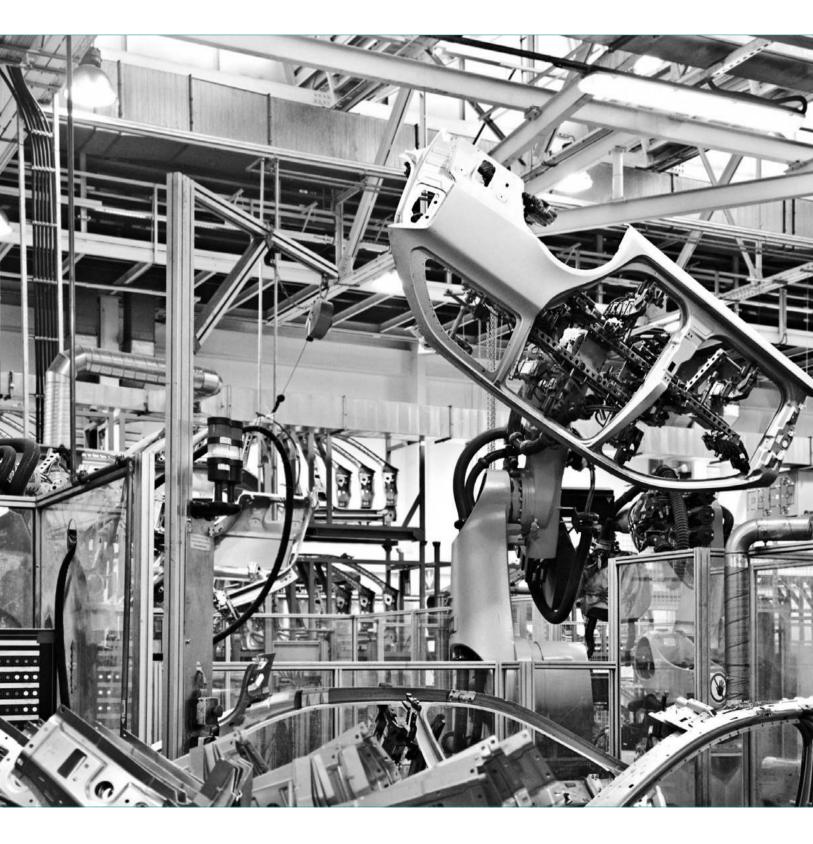
- · CVT type using oil pump
- · Electronically controlled
- · Fail-safe design

Reduction gear assembly

- \cdot Design for helicopter drone
- · With spur gear & spiral bevel gear
- · Assembling and dynamo test

Energy Flow-Down Method

Great success for development of better FE


7~15% improvement of FTP-75 / NEDC mode F/E

Company	Vehicle program
Н	Passenger car (1.10 / 1.50 / 1.60 / 2.00 / 2.40 / 3.30 / 3.80)
	Diesel SUV (2.02, 2.22)
	Commercial vehicle (24 ton truck)
G	Diesel SUV for Korean / US / EU market (2.00)
S	Diesel SUV & Van (2.5 / 2.7ℓ)
	Diesel SUV 2.0
R	Passenger car (V6 3.50)
TOYOTA, HONDA, RENAULT, VOLVO, AUDI, etc.	More than 25 benchmarking analyses

Achievements

Relatively the history of TENERGY is short, but our development references are great. Furthermore, we have major engine design and development contracts with automakers and industrial makers at this moment.

Vehicle engineering						
	Saga-R Exora	Persona-R New Saga	lriz Savvy	Preve	Integrated engineering (Vehicle development)	
	Next Mini bus	Next Van	Gaz-on truck	Next Double	Integrated engineering (Body manufacturing integration)	
Ø	lada s/w	lada vesta			Integrated engineering (Vehicle development)	
T	HEXA				Integrated engineering (Vehicle development)	
<u>GM</u>	Essentia	Aveo	Sail	D-MAX	Tool & equipment development (Body assembly)	
	Ling-ao				Tool & equipment development (Body assembly)	

Engine Design

A lot of recent new engines have showed new variants and limits in every component and combustion type, which have motivated TENERGY to look into the relative merit of each engine.

80a

-

v later v later v later look brager blocker block v later v later v later later v bet of of

in

The design philosophy of TENERGY is to develop well-researched and test-supported criteria to support the design decisions of future engine by investigating the key considerations of new engine design thoroughly and observing their trends carefully.

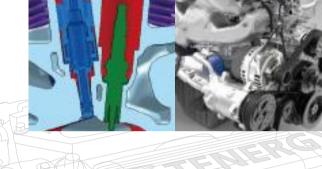
Experienced and highly motivated design engineers work on all types of design projects. And they are effectively supported by our experienced CAE, combustion system, mechanics and electronics teams. Furthermore TENERGY design details always take into account our clients' manufacturing boundary conditions and facilities.

TENERGY mainly uses Pro-E or CATIA and carries out engine design based on 3D model. Theoretical and numerical analyses are also carried out for every optimization. We surely guarantee our design and development outputs after SOP

8

OC OCANCE

Engine design

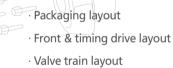

- · Gasoline engine
- · Diesel engine
- · Industrial engine
- Hybridization
- · 2-stroke engine
- · Wankel engine
- · Marine engine
- · Gen-set engine

Engine design process

Concept design

Definitive design

- · Parts & layout design(3D modeling)
- · Kinematic / Motion analysis
- Valve & crank train
- · Structural FEA
- Cylinder block & head
- Crankshaft, connecting rod
- Bulkhead & main bearing cap
- Valve train
- · Modal analysis
- Main structural parts
- Covers & brackets
- · Fatigue life calculation
- High & low cycle fatigue
- · CFD
- Intake & exhaust ports
- In-cylinder flow(combustion)
- Coolant flow
- Intake & exhaust manifold


Detail design

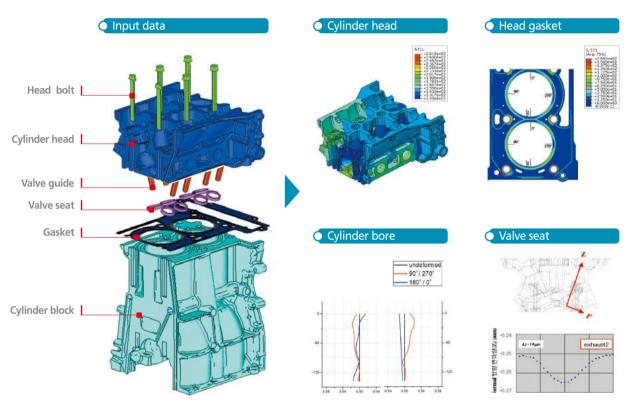
Detail parts design(3D modeling) 2D drawings

- Tolerance
- Roughness
- Material
- Machining
- All information related to
- production
- · Reports
- Design
- Analysis

- · Valve train layout
- · Intake & exhaust system layout
- · Cooling & lubrication circuit
- · Numeric analysis
- 1D cycle simulation
- 1D cooling & lubrication
- Oil film thickness
- Torsional vibration
- Crankshaft, conrod
- Piston & piston pin
- Bolt tightening
- Engine balancing

CAE Analysis

TENERGY supports all CAE works required in every engine design stage.


In concept design stage, baseline simulations such as gas exchange calculation, numerical analysis of cranktrain and piston assembly including TV, 1-D cooling and lubrication analysis are carried out.

In detail design stage, structural and dynamic analysis of engine major components are carried out. In addition CFD of coolant and exhaust gas flow and NVH analysis of auxiliary parts are performed.

Highly specialized experts with many years of experience in the field of engine development are involved in all CAE works which simulate actual loading conditions as much as possible. Therefore they can offer the optimum solutions for all stages in development process.

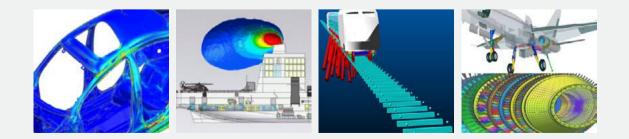

TENERGY pays particular attention to CAE works in the scope of development process. CAE works support the whole development process efficiently and enable clients to produce highly qualified engines while achieving shorter development time and lower cost.

Gas exchange with T/C matching	FEA cylinder head & block compound
1-D cooling	FEA cylinder block
1-D cooling	rea cyllider block
1-D lubrication	FEA cylinder head(LCF)
Valve train kinematics	FEA crankshaft
Bearing load analysis	FEA connecting rod
Torsional vibration	FEA exhaust manifold(HCF & LCF)
CFD In/Ex. port	FEA brackets
CFD in-cylinder flow	FEA NVH & modal analysis
CFD coolant flow	FEA intake manifold(plastic)
CFD intake manifold	FEA cylinder head cover(plastic)
CFD exhaust manifold	

FE analysis of cylinder block & head compound

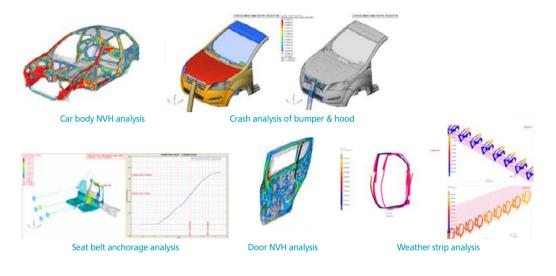
CFD analysis

CAE Specialty Co. - Ill TenergySoft

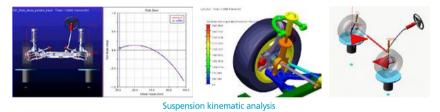

The company TenergySoft is a family of TENERGY providing comprehensive CAE consulting services to a variety of customers all over the world.

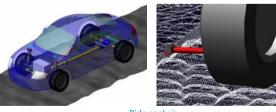
Business areas						
Automotive	Defense Ra	ail	Aerospace etc.			
CAE analysis of powertrain	CAE analysis of vehicle	CAE analysis of shipbuilding	CAE analysis of others			
Intake & exhaust flow Structural & thermal Noise & vibration - Normal mode & FRF of PT - Whine & rattle noise of TM	Suspension K&C Full vehicle R&H Autonomous driving validation Virtual test validation Crash of bumper & hood	Structural & strength Durability of ship Performance estimation Energy saving device Propeller design	Landing gear drop Composite material Railway derailment Fluid-Structure Interaction(FSI) Heavy equipment			

Application fields

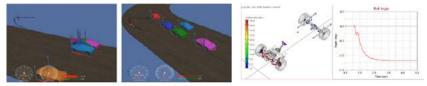

- · Structure / Fatigue / Nonlinear
- · Multi body dynamics
- · NVH / Composite / Optimization

- · Fluid dynamics / 1D simulation
- \cdot Vehicle driving simulator
- · Analysis & test process consulting

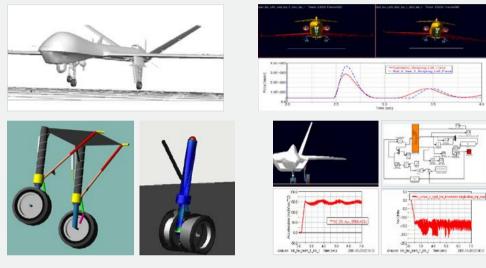



III TENERGY

CAE analysis of chassis & vehicle

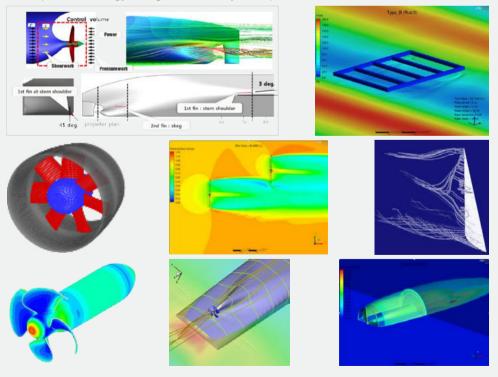


CAE analysis of chassis & vehicle

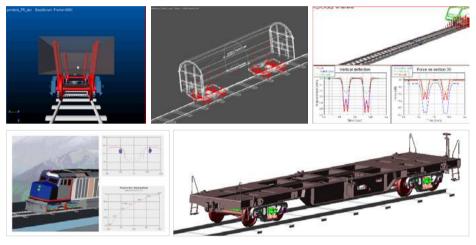

Max performance

Handling analysis

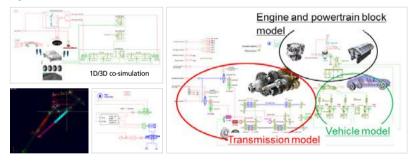
CAE Specialty Co. - Ill TenergySoft


CAE Analysis of machinery

Aerospace analysis

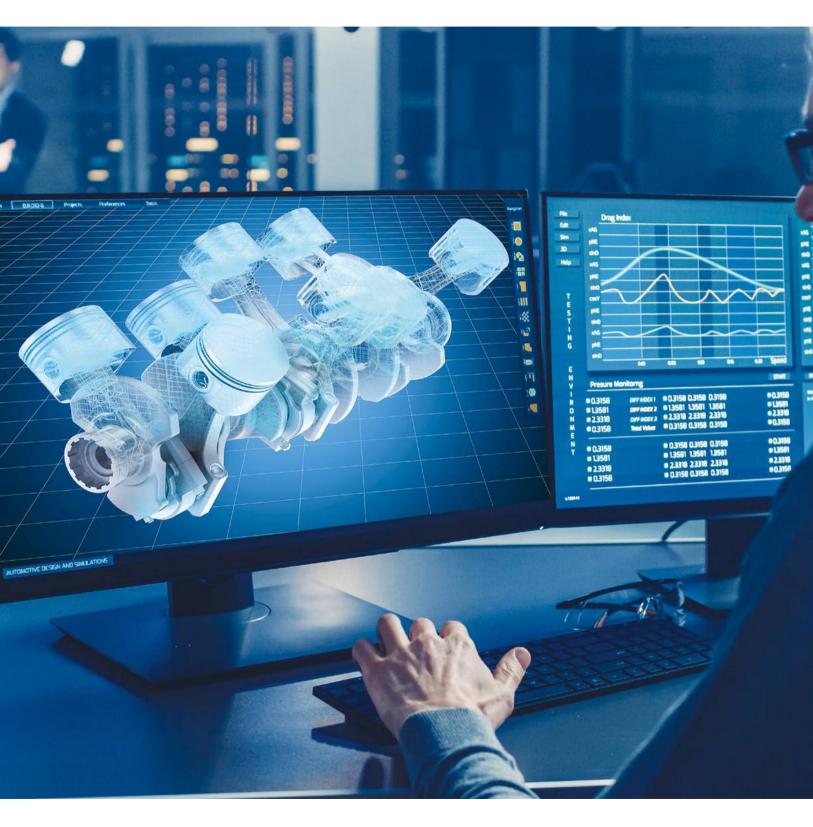

Shipbuilding analysis

Development of energy saving device / Analysis for performance estimation



III TENERGY

Railway analysis


System(1D) simulation

Driving simulator

Engine Test

III TENERGY

Performance development

- · Combustion system development
- · Turbocharger matching
- · Port flow development

Mechanical & functional development

- · Ventilation test
- · Heat balance test
- · Piston marking test

Durability test

- · Full load & full speed test
- · Thermal shock test

Benchmarking test

Mechanical & functional test

- · Breathing system development
- · EGR, particulate filter, LNT, SCR application for emission
- · Engine calibration (torque/air model, base maps)
- · Oil consumption & blow-by development
- · Thermal survey test
- · Fatigue test
- · Mixed cycle test
- · Special purpose test

Telemetry system

Thermal survey test

Cooling system bench

Valve train dynamics

Piston profile measurement

Visualization test

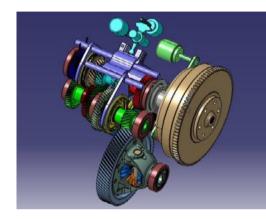
Friction test

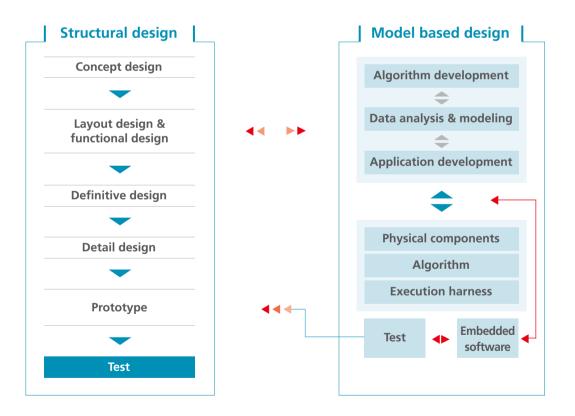
Transmission Design & Development

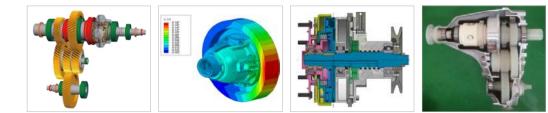
Transmission development

- · Compact layout design of manual transmission and DCT
- · Multi-speed gearbox for electric vehicles
- \cdot Cost-effective design of transfer case for 4WD
- · Development of compact AMT which has no torque interruption

Transmission calibration


Optimal results for dynamics, performance and fuel consumption


Prototype development, testing and validation


- · Rapid prototyping by 3D printing
- · Mechanical and functional rig tests
- Transmission dynamometer for transaxle tests with engine

Transmission development process

We meet the requirements on the functionality and efficiency using an effective and start-to-finish process.

Vehicle Calibration

TENERGY provides vehicle calibration services which cover SULEV, EURO 5/6 and Tier 4 regulations and clients can choose total calibration services including emission, drivability and OBD-II or selective calibration one. TENERGY has also very strong point in the fuel economy analysis of whole vehicle which evaluates individual effects of all

TENERGY has also very strong point in the fuel economy analysis of whole vehicle which evaluates individual effects of all fuel consumption elements quantitatively.

Our service work is increasing every year in cooperation with Korean car makers.

III TENERGY

Target vehicle

Calibration

- Gasoline
 Emission
- · Diesel ·
- Hybrid
- ·ΕV

WORLD BEST WITH THE BEST

- · OBD-II
- Drivability
- / · After treatment system

Emission calibration

- SULEV, EURO 6d, China 6b and Tier 4 (Industrial)
- Emission related hardware and component selection
- Optimization of logic and calibration for leaner cold fueling
- UREA-SCR application
- DPF calibration

OBD-II calibration

- OBD-II, EOBD and KOBD regulation

Drivability calibration

- Optimum calibration for high drivability index fuel
- Logic development for high drivability index fuel
- Drivability calibration over -30~50° ... ambient temperature

Fuel economy analysis

- Energy Flow-Down Method

Vehicle benchmarking

- Emission related hardware, logic and calibration
- Fuel economy related hardware, logic and calibration
- Drivability related logic and calibration

Development of advanced fuel economy system and logic

Catalyst bench aging and vehicle durability cycle development corelated with in-use DF

Vehicle Calibration

Gasoline SULEV application

Fast light-off control

- \cdot H/W side
- Place the catalyst as close as possible to exhaust manifold
- Increase catalyst cell density
- \cdot Calibration side to increase heat flux
- Increase Idle engine speed
- Spark timing calibration
- Waste-gate position open control

Reduce engine-out raw emissions

: optimum catalyst heating point and cold start

- · Intake/exhaust VVT control
- · Injection strategy calibration
- : SOI, EOI, fuel pressure, split injection calibration

NOx conversion efficiency increase

- \cdot Fuel cut off condition calibration
- \cdot Catalyst purge calibration to increase NOx conversion efficiency
- \cdot Lambda control calibration with downstream O2 sensor feedback

Gasoline particulate filter control

GPF model calibration

- · DP soot mass with clean filter model
- \cdot Engine out soot model
- · Soot burning rate model
- · GPF temperature model

GPF control

- Passive / active regeneration control
 (Lambda, temperature control)
- · Fuel cut off conditon calibration during regeneration
- · Soot mass validation (model vs actual mass)
- · Soot burning efficiency test
- · Service regeneration strategy
- · GPF regeneration strategy (duration, coordinator)
- \cdot GPF OBD (efficiency) strategy

GPF validation test

· GPF failure check through uncontrolled

burning test (DTI, DTO)

- : CT scanning confirmed
- · Environment test (cold, hot, altitude)
- \cdot Ash calibration with fleet test

Diesel SCR control

SCR model calibration

- · Raw NOx, NO/NO2 ratio modeling
- · NOx conversion efficiency modeling
- · NH3 loading/slip modeling
- \cdot SCR temperature model
- · SCR efficiency model

SCR Control

- · Heat-up
- · NH3 loading target
- \cdot Urea dosing schedule
- · SCR defrost calibration in cold condition
- \cdot Strategy for improvement of emission(RDE, WLTC, NEDC, etc)
- · SCR OBD strategy(efficiency, incorrect urea, consumption, etc)

SCR validation test

- · Environment test(cold, hot, altitude)
- \cdot Validation of model accuracy
- \cdot Robustness of NOx conversion efficiency in real driving

Diesel particulate filter control

DPF model calibration

- · DP soot mass with clean filter model
- · Engine out soot model
- · Soot burning rate model
- · DPF temperature model

DPF control

- Heat-up / active regeneration control (air control, post injection control)
- · Open & closed loop temperature control
- \cdot Transient conditon check and calibration
- · Soot mass validation (model vs actual mass)
- \cdot Soot burning efficiency test
- · Service regeneration strategy
- · DPF regeneration strategy (duration, coordinator)
- · DPF OBD (PM sensor, efficiency) strategy

DPF validation test

· DPF failure check through uncontrolled

burning test (DTI, DTO)

- : CT scanning confirmed
- · Environment test (cold, hot, altitude)
- · Oil dilution & ash check with fleet test

Vehicle Calibration

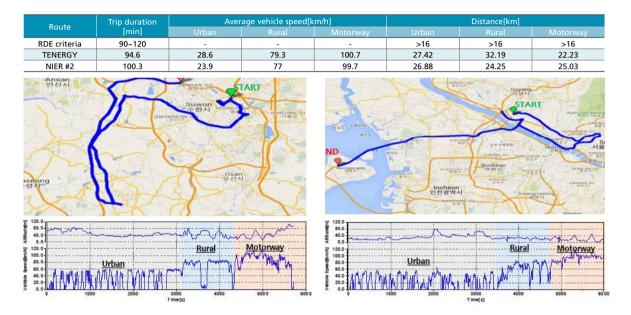
Diesel EURO 7 / China 6

Additional challenge for better fuel consumption

- · Thermal management
- Integrated thermal management 3-way valve control(block, radiator, heater)
- Split cooling circuit
- Optimized temperature of each part
- · Weight reduction
 - Aluminum cylinder block
- · Friction reduction
- Piston & ring design optimization
- Crankshaft balance weight optimization
- Variable oil pump integrated with vacuum pump
- Timing belt instead of chain system
- Camcarrier-camshaft module
- Crank offset
- Roller rocker arm
- Switchable water pump or electrically controlled thermostat

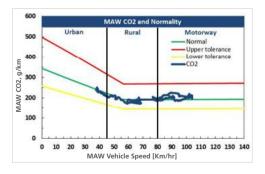
After treatment system

- · SCR system will be in multiple locations and the total size will be larger
- · Urea injection will be multi-point injection.
- · DPF would not need active regeneration any more, only passive type would be enough.
- \cdot Electrically heated catalyst could be used for cold start emission.

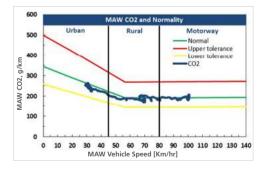

Combustion system

- With enhanced SCR system, engine developmint could be focused only on better thermal efficiency and on reducing PM, no longer on reducing NOx emission as before.
- · Compression ratio would be raised to around 18 from current 15~16.
- · EGR would be used limitedly or the system even may be deleted.
- · High swirl would be required less than before, therefore port could be optimized for more flow.

Electrification


- · 48V mild hybrid system will used.(P0~P2)
- · EHC could be effective by 48V system

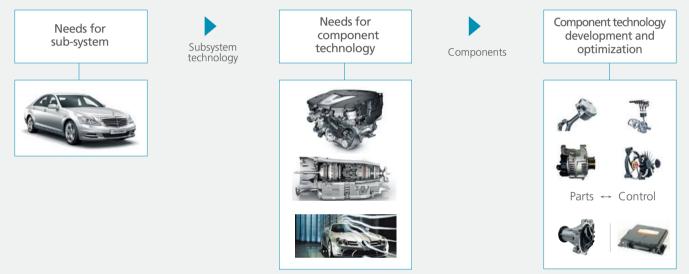
RDE test route


RDE test evaluation

Dynamic condition @ MAW: meet the RDE criteria

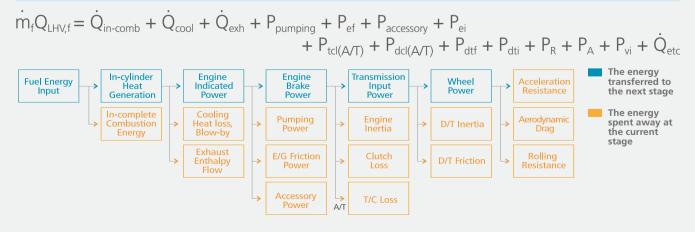
TENERGY route

Window No.						
TENERGY route	Urban	1332	24.59%			
	Rural	1541	49.27%			
	Motorway	1050	26.14%			


NIER#2 route

Window No.					
NIER#2 RDE	Urban	1911	26.99%		
	Rural	1153	29.69%		
NDL	Motorway	793	20.32%		

Fuel Economy Analysis


Principle of Energy Flow-Down Method

To improve fuel economy of your car, understanding of engine + T/M + vehicle interaction and control strategy (ECU, TCU) are very Important

Benefits of Energy Flow-Down Method

- Energy Flow-Down Method can analyze the fuel consumption and contribution of each component and ECU/TCU control data through systematic approach.
- Client can have the whole view for the quantitative fuel consumption and contribution of each component.
- Client can recognize the weak and strong points against target vehicle.
- Client can understand how top maker optimizes every component and control data to improve fuel economy.
- Client can make catch-up plan of short, mid, long term in the most efficient cost.

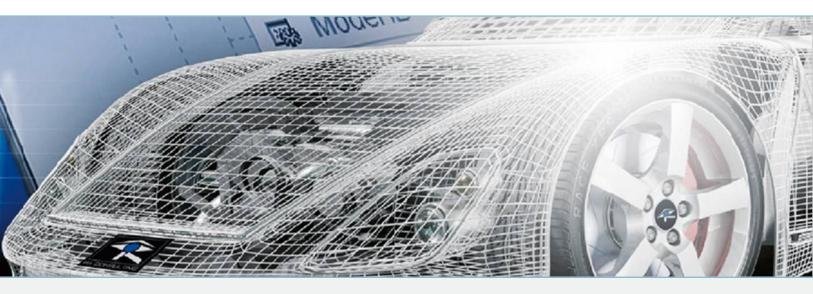
How we do, What you can get!

Measurement items

- · Combustion pressure
- \cdot Ignition signal
- \cdot Engine speed
- \cdot Vehicle speed
- \cdot Manifold absolute pressure
- \cdot Air /Fuel ratio
- · Battery voltage & current
- \cdot Alternator current
- $\cdot \operatorname{Cooling}$ fan current
- · Brake pedal signal
- · Accelerator pedal signal
- · Throttle angle signal
- \cdot Coolant temperature
- \cdot Engine oil temperature
- \cdot Injection pulse
- \cdot Fuel rail pressure
- \cdot Fuel temperature
- \cdot Exhaust gas temperature
- \cdot Turbine rpm
- \cdot Output shaft rpm
- · Engine inertia @ lift
- \cdot Drivetrain friction @ lift
- \cdot Drivetrain inertia @ lift
- · Engine friction @ bench
- Torque converter characteristics @ MAD
- · Injector characteristics @ rig
- · Power steering friction @ rig
- Each gear driving resistance
 @ test load (if necessary)
- · Shift pattern & lockup area @ MAD

Results

- \cdot Indicated thermal efficiency
- \cdot Incomplete combustion loss
- · Pumping loss
- \cdot Engine friction loss
- \cdot Alternator loss
- · Power steering loss
- \cdot Engine inertia loss
- \cdot Torque converter base loss
- \cdot Torque converter slip loss
- · Braking loss
- \cdot Drive train friction loss
- \cdot Drive train inertia loss
- \cdot Clutch loss
- \cdot Vehicle inertia loss
- · Rolling resistance loss (f0)
- · Aerodynamic resistance loss (f2)
- · Pilot/Main injection timing (diesel)
- · Spark timing (gasoline)
- · Idle RPM
- \cdot Total fuel cut time
- · Total cycle number
- \cdot Cooling fan loss
- · Total part load full lockup time
- · Part load speed ratio distribution
- · Total driving time at each gear
- · Shift pattern
- · Energy management system logic
- \cdot Neutral control logic
- \cdot Deceleration lockup logic
- \cdot Ne elevation logic


Recommendation

 $\cdot \operatorname{Logic}$ & calibration strategy

- ·Engine hardware strategy
- Friction improvement
- System application strategy (Intake CVVT, Dual CVVT, Turbo, GDI, etc.)
- Characteristic of engine (BSFC, mechanical friction,
- pumping friction, engine inertia)
- · Transmission hardware strategy
- · Shift pattern & lockup zone strategy
- ·Torque converter selection strategy
- Gear ratio selection strategy
 Transmission related loss
- (Drivetrain friction loss, slip loss,
- fuel consumption at each gear)
- Vehicle thermal management strategy
- · Vehicel electrical load strategy
- · Vehicle energy save strategy
- Rolling resistance reduction strategy
- Aerodynamic resistance reduction strategy

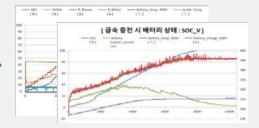
loss (f0)

xEV Benchmarking and System Development

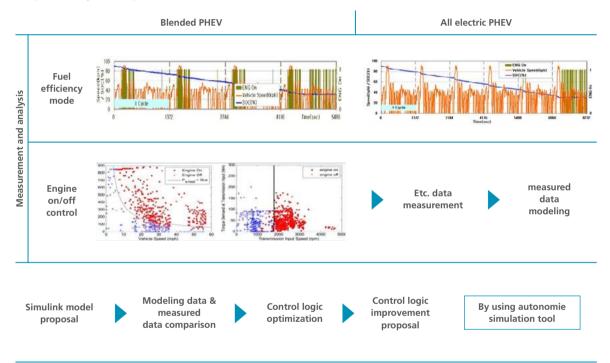
xEV benchmarking

- \cdot Key data measurement via CAN analysis through CAN network reverse engineering
- \cdot Analysis of system control strategy and thermal management system for improvement
- · Data for fuel efficiency, battery SOC, cell temperature, available power, voltage, current, cooling & heating...etc.

Sensor installation


Sensors & vehicle data logging

Logging devices connection



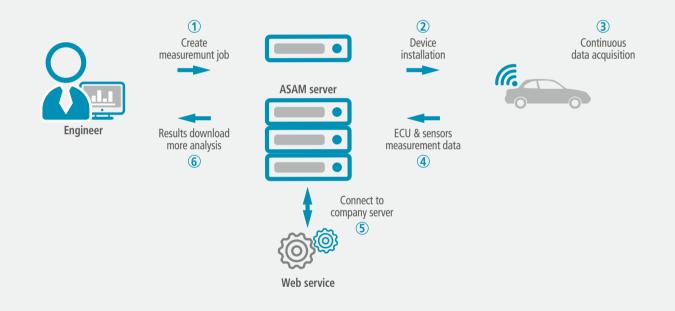
Test result & analysis

System planning for system configuration and specification

- · System concept design through simulation and analysis about fuel efficient, SOC, cell temperature, voltage, current, engine torque, engine on/off pattern, cooling & heating, etc.
- · Proposal for system improvement

System test and validation

- · System bench test to validate system performance and control strategy
- · System/Component performance
- Fuel efficiency
- Performance
- \cdot Controller reliability
 - Design verification
 - Fail safe evaluation


Electric & Electronics Solution

Analysis system for mobile data loggers with web interface

For testing and optimizing their utility vehicles, most OEM operate a fleet of vehicles equipped with measurement systems.

Several hundred signals related to the vehicle's operation are recorded over an entire shift: temperatures, pressures, rotation speeds, brake pedal operations, accelerations and shifting operations as well as a large number of controller parameters.

Several gigabyte of raw data is collected per vehicle and shift and automatically transmitted to a central server.

Pre-configuration for measurement

The main software configures vehicle state variables from control units and measurement devices to vehicle data logger. The results can be stored in itself or sent to web server.

Individual analysis for measurement data

For the analysis of measurement data, we can offer configurable analysis tool which can be easily adapted to the specific requirements without any programming work.

Overview in the web portal

All information and data for the test drives can be found in the company intranet via a clearly arranged web dashboard independent of time, location, and platform and can be used for analyses.

Hardware key features

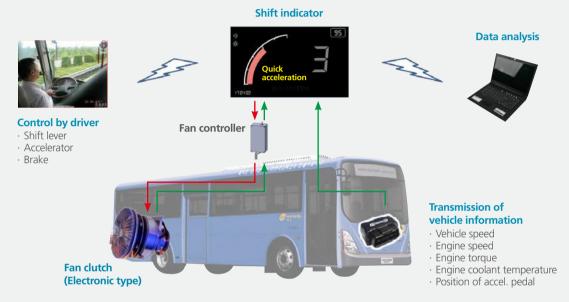
- \cdot LCD screen
- · 6 High speed CAN/CAN FD channels
- \cdot 1 single wire CAN channel
- · 1 fault tolerant CAN channel
- · 2 local interconnect network (LIN) channel
- · 100 Mbps Ethernet connectivity
- \cdot Wi-Fi enabled
- · USB connectivity
- \cdot On-board media storage
- Can be powered by USB, the vehicle, or 12V power adapter (included)

Application software

T- FDMS (Fleet Data Management)

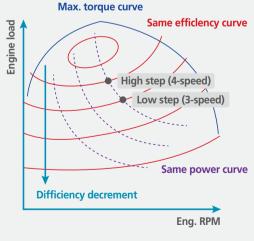
Elle Irigger Functions Estras Yiew	Options Help	01. Engine Con	tral Modu	de1	105	UDS N
Select diagnostic data set 5. Manage diagnostic data sets		X>A	e 4	0 E		
Copen configuration	•			Current Data		
Open ECU description file	Open <u>A</u> 2L-file.					
	Com 1/20/103					
Save current gage Stog+3						
Greate measurement						

- Supports CCP as well as XCP on CAN as well as UDP and data acquisition on raw CAN. CAN DBC and A2L files provide the parameter data descriptions.
- Parameterization of measurement sequences in batch mode (measurement channels, trigger conditions). Program closes after a specified number of recordings initiated by trigger.


T- APIS (Assembled Parts Inspection)

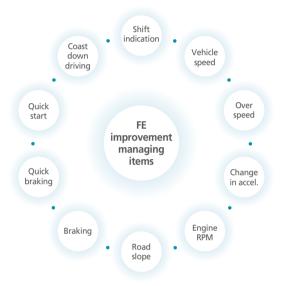
- · Abnormality check for the main sensors of ECU.
- Inspection for the parts & assembles from ECU CAN data analysis in the end of lines. (ex. boost pump, EGR valve...etc.)
- · Improving the quality of mass-produced vehicles.

Bus Fuel Saving System


How to improve FE (Fuel Economy)

Shift indicator principle

- Fuel economy can be maximized in case that vehicle is driven in the area of engine highest efficiency.
- Shifting point, optimized in terms of fuel economy is indicated to the driver.
- · Quick acceleration and deceleration are especially managed in consideration of passenger's safety.
- \cdot Driving pattern can be managed by scoring system



Fuel economy at point 'A' > point 'B' (at the same vehicle speed)

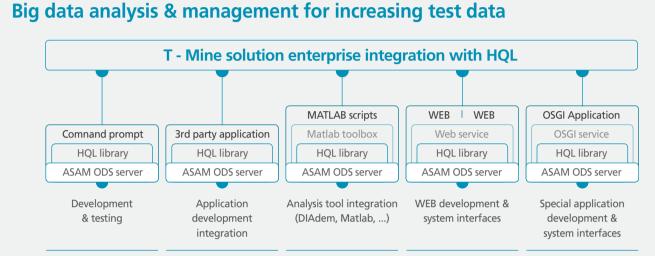
Scoring system

Main items of driving score management

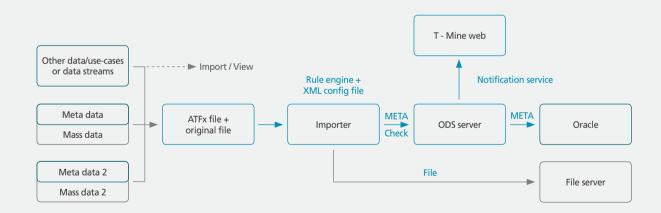
Consideration in driving score calculation

- FE improvement driving indication by operation at optimized (in terms of FE improvement) point depending on route and road condition (road slope, number of passenger)
- · Optimization for driving pattern by distance between bus stops
- Accomplishment of FE target higher than the fixed level and the proposal of FE improvement direction by use of the scoring system of FE driving level
- Regulation to be reinforced in order to prohibit bus driver from quick start and braking in consideration of passenger's safety

Seoul city bus program


No. of bus joined in the program	7,500 units	
Business type	ESCO (Energy Service Company) investment business TENERGY, as an ESCO, defrayed the program investment cost No burden of investment cost to other parties	
Program start	2014. 08 ~	
Fuel ratio improvement	about 15%	

Daegu city bus program



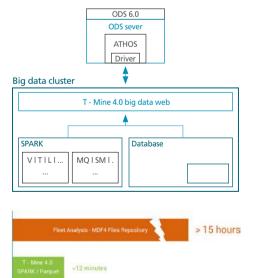
No. of bus joined in the program	1,600 units
Business type	ESCO (Energy Service Company)
Program start	2018. 08 ~
Fuel ratio improvement	about 12%

Big Data Management System

The efficient performance of tests becomes increasingly important in vehicle development. Especially in global acting enterprises a powerful management system is required that overcomes rigid departmental boundaries and gets the complexity of the test processes under control. The major strength of ASAM ODS, compared to non-standardized data storage solutions, is that data access is independent of the IT architecture. Besides, the data model of the database is highly adaptable and well-defined for different application scenarios.

Overview in the web portal

All information and data for the test drives can be found in the company intranet via a clearly arranged web dashboard independent of time, location, and platform and can be used for analyses.


T – Mine Web Server

for ASAM ODS data management

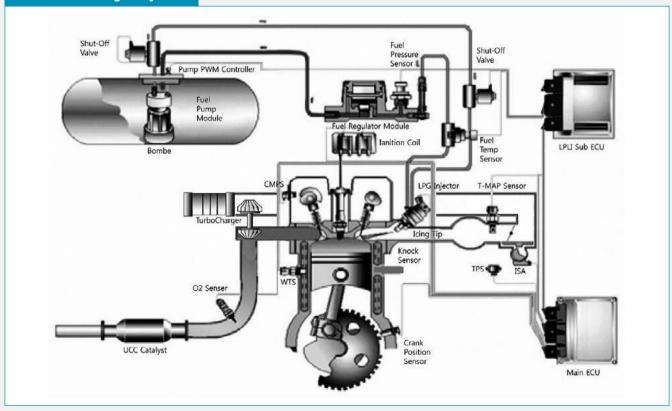
Various data sources	T - Mine web server test data management	Functionality of T - Mine web server
Engine testbed	UI / UX	Synchronizing test data
	Auth. control / security	Post processing
<->	Web Mobile	Standard reporting
Chassis testbed	WAS DBMS	
SEL . 🖗		Lab / Test monitoring
inca	ODS server	Test equipment managing
Mobile data	Oracle DB File sever	Accuracy management
	Devices management	
	Data mapper	Test analysis by application
3 rd Party	Data converter	(Connected) Big data analysis

T – Mine 4.0 Big data Web server

for Big data analysis from measurement data

- Provides an extension for T Mine ODS server, which is suited for accessing and processing measurement data stored in Parquet files. In its latest technology proposal for big data, ASAM has recommended this format as appropriate for storing mass data.
- The flexibility of the solution from customer's requirements for processing and analyzing large amounts of measurement data.

Analysis and result file generation / export on 200 measurements or 212.000.000 samples


Gas Engine Development (LPI, CNG, Biogas)

As the importance of the environment grows Korean government started to support diesel engine retrofit to LPI or CNG one with a subsidy from the middle of 2000s.

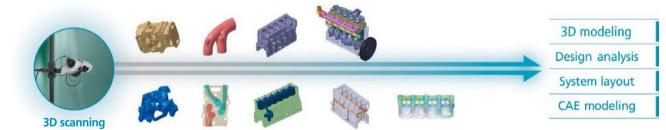
TENERGY has a outstanding technology in LPI, CNG and Biogas engine applications on the basis of plentiful expertise of mass production engine development and vehicle application. TENERGY offers the best engine performance and fuel economy through knock sensor application and minimizes field claim through systematic vehicle calibration of emission and drivability.

TENERGY reference of LPI engine

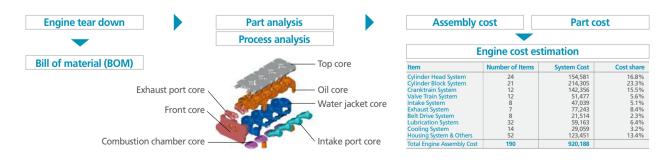
- Improvement of engine power by 10~20%
- · Reduction of exhaust emission by more than 50% to meet EURO 6 / ULEV standards

TENERGY LPI engine system

Powertrain Benchmarking


Gasoline engine test

Items	Details
Full load performance	1000~6500 rpm (250 step)
Part load performance	BSFC, BSHC, BSCO, BSNOx at 23 specified points
Whole range data logging	BSFC, BSHC, BSCO, BSNOx, A/F, spark timing, exhaust temperatures, valve overlap, waste gate control, exhaust pressures, intake pressures at 1000-6500 rpm (500 rpm & 1bar step)
Motoring friction	1000~6000 rpm (500 rpm step)
Smoke (for GDI)	WOT (1000-6000 rpm) at 30℃/50℃/90℃ coolant temperatures
Performance with variable hardware states	Full load and part load performance with intake OCV removal, exhaust OCV removal and VVL low
Combustion pressure	Full load, 23 specified part load points and idle
Oil dilution (for GDI engine)	1. WOT at 2000 rpm (coolant 50°C,1hr) 2.10bar at 2500 rpm (coolant 50°C,1hr) 3. 5bar at 2500 rpm (coolant 50°C,1hr) 4. WOT at 1000 rpm (coolant 50°C,1hr)


Diesel engine test

Items	Details	
Full load performance	Power, torque, smoke(FSN), noise, BSFC, BSHC, BSCO, BSNOx, EGR rate, boost pressure, main injection timing, pilot injection timing, rail pressure, intake temperatures, intake pressures, exhaust temperatures, exhaust pressures (including before DOC and after DPF) at 1000-4500 (250 step)	
Whole range data logging	The same items as above at 1000-4500 rpm (250 rpm, 1bar steps)	
Motoring friction	1000~4500 rpm (500 rpm step)	
NVH	Whole range (combustion analyzer)	

Design benchmarking by 3D scan

Benchmarking by cost analysis

Vehicle Engineering

The vehicle engineering of TENERGY provides various engineering services for vehicle development from vehicle design to the development of various equipment for vehicle production based on engineering know-how and program management capability. The outstanding vehicle engineering capabilities of TENERGY ensure that customers have a successful vehicle launching.

Vehicle design & validation

TENERGY covers the whole range of vehicle design and validation including prototype for test & validation. Through close collaboration with styling, manufacturing engineering and P/T engineering, TENERGY creates competitive vehicle in terms of performance, cost, fuel efficiency, etc.

Body design

- · Body structure & BIW
- \cdot Exterior trim
- · Door & moving

Chassis design

- · Front & rear suspension
- · Brake & steering system
- · Heat & fluid

Vehicle package

- · Layout & key dimension
- · Ergonomics & legal
- · Digital mock-up

Prototype for T&D

- \cdot Proto BIW / Vehicle
- \cdot Mule car & cubic Jig
- · Off-tool prototype

Interior design

- · IP & console
- · Interior trim & HVAC
- · Seat & restraints

Electrical design

- · Lamp & switch
- · Wiring harness
- · Electric & electronics

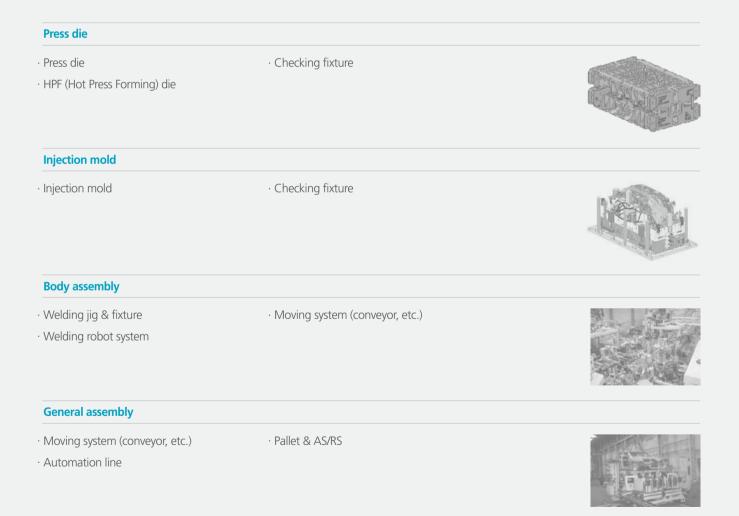
Eng. Management

- \cdot Cost / Weight management
- Issue troubleshooting
- · Design qualification

Test & validation

- \cdot Test support
- \cdot Validation (Virtual / Real)
- · Homologation support

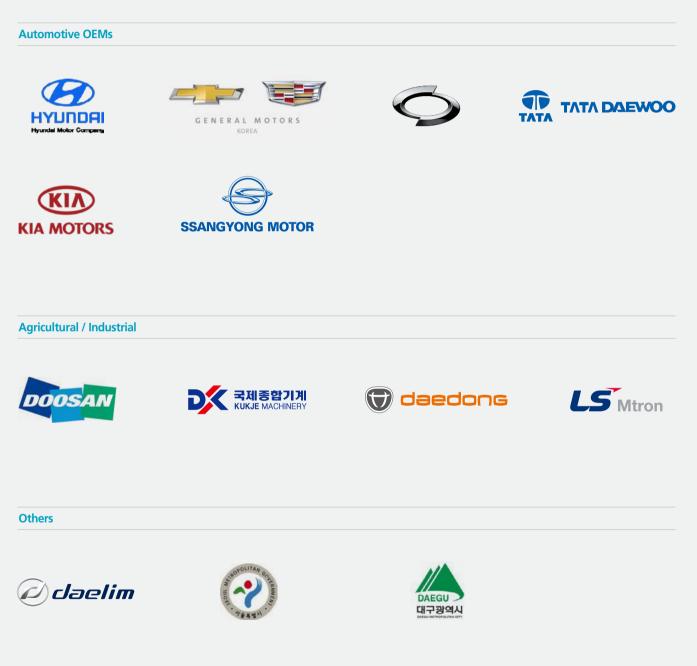
Simultaneous engineering (SE)

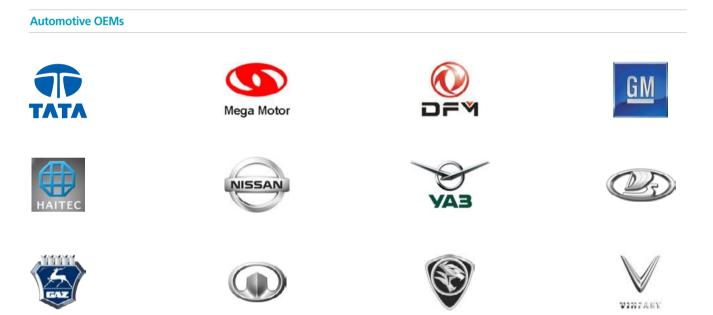

As major virtual validation with CAE, TENERGY provides SE service based on the engineering capability covering the entire area of the vehicle manufacturing. By this SE, TENERGY helps to make optimal vehicle design suitable for vehicle production and proposes the process plan with optimized productivity.

Press SE			
Panel formability & matching	· Die operation flow		
Material optimization	· Checking fixture	F.00	
Body SE			
Weldability & gun access	· Line automation & duct location	- Ran	
MCP / MCS & tolerance	· Cycle time & process flow		
Paint SE			
Anti-corrosion	· Dipping & oven		
ELPO access & fluid drainage	· Water & dust proof		
General assembly SE			
Assembly tolerance	· Line balance & logistics		
Workability & tool access	· Visibility & handling & error proof		
Injection SE			
Plastic formability	· Hazardous substances		
Raw material & flow	· Part quality & checking fixture		

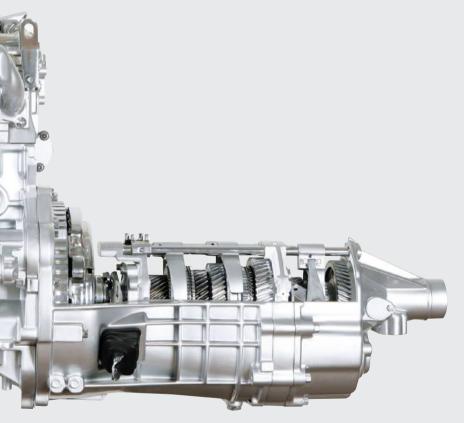
Vehicle Engineering

Tool & equipment development


With SE, TENERGY provides the development service of tool & equipment for vehicle production. The engineering capability of TENERGY leads the whole tool & equipment development phase from design to completion of installation and commissioning for the majority of vehicle manufacturing process, and supplies the best quality tool & equipment within the timeframe required by customers.


Major Clients

Domestic (Korea)



III TENERGY

Overseas

World Best with The Best

contact@tenergy.co.kr

Suwon
R&D centerAdvanced Institute of Convergence Technology, Automotive Research Center, 145, Kwanggyo-ro,
Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea 16229
tel. 82-31-888-9870Dongtan
R&D center28, Dongtansandan 10-gil, Dongtan-myeon Hwaseong-si, Gyeonggi-do, Korea 18487
tel. 82-31-548-0741